Package: innsight 0.3.1
innsight: Get the Insights of Your Neural Network
Interpretation methods for analyzing the behavior and individual predictions of modern neural networks in a three-step procedure: Converting the model, running the interpretation method, and visualizing the results. Implemented methods are, e.g., 'Connection Weights' described by Olden et al. (2004) <doi:10.1016/j.ecolmodel.2004.03.013>, layer-wise relevance propagation ('LRP') described by Bach et al. (2015) <doi:10.1371/journal.pone.0130140>, deep learning important features ('DeepLIFT') described by Shrikumar et al. (2017) <doi:10.48550/arXiv.1704.02685> and gradient-based methods like 'SmoothGrad' described by Smilkov et al. (2017) <doi:10.48550/arXiv.1706.03825>, 'Gradient x Input' or 'Vanilla Gradient'. Details can be found in the accompanying scientific paper: Koenen & Wright (2024, Journal of Statistical Software, <doi:10.18637/jss.v111.i08>).
Authors:
innsight_0.3.1.tar.gz
innsight_0.3.1.zip(r-4.5)innsight_0.3.1.zip(r-4.4)innsight_0.3.1.zip(r-4.3)
innsight_0.3.1.tgz(r-4.4-any)innsight_0.3.1.tgz(r-4.3-any)
innsight_0.3.1.tar.gz(r-4.5-noble)innsight_0.3.1.tar.gz(r-4.4-noble)
innsight_0.3.1.tgz(r-4.4-emscripten)innsight_0.3.1.tgz(r-4.3-emscripten)
innsight.pdf |innsight.html✨
innsight/json (API)
NEWS
# Install 'innsight' in R: |
install.packages('innsight', repos = c('https://bips-hb.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bips-hb/innsight/issues
Pkgdown site:https://bips-hb.github.io
Last updated 2 months agofrom:8b8c3f7f2d. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 26 2024 |
R-4.5-win | OK | Dec 26 2024 |
R-4.5-linux | OK | Dec 26 2024 |
R-4.4-win | OK | Dec 26 2024 |
R-4.4-mac | OK | Dec 26 2024 |
R-4.3-win | OK | Dec 26 2024 |
R-4.3-mac | OK | Dec 26 2024 |
Exports:AgnosticWrapperConnectionWeightsconvertConverterDeepLiftDeepSHAPExpectedGradientget_resultGradientIntegratedGradientLIMELRPplotplot_globalprintrun_cwrun_deepliftrun_deepshaprun_expgradrun_gradrun_intgradrun_limerun_lrprun_shaprun_smoothgradSHAPshowSmoothGrad
Dependencies:backportsbitbit64callrcheckmateclicolorspacecorodescellipsisfansifarverggplot2gluegtableisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigprocessxpsR6RColorBrewerRcpprlangsafetensorsscalestibbletorchutf8vctrsviridisLitewithr
Example 1: Iris dataset with torch
Rendered fromExample_1_iris.Rmd
usingknitr::rmarkdown
on Dec 26 2024.Last update: 2023-12-21
Started: 2023-02-01
Example 2: Penguin dataset with torch and luz
Rendered fromExample_2_penguin.Rmd
usingknitr::rmarkdown
on Dec 26 2024.Last update: 2023-12-21
Started: 2023-02-01
In-depth explanation
Rendered fromdetailed_overview.Rmd
usingknitr::rmarkdown
on Dec 26 2024.Last update: 2023-12-21
Started: 2023-02-01
Introduction to innsight
Rendered frominnsight.Rmd
usingknitr::rmarkdown
on Dec 26 2024.Last update: 2023-12-21
Started: 2021-11-22
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Get the insight of your neural network | innsight-package innsight |
Indexing plots of 'innsight_ggplot2' | [,innsight_ggplot2-method [.innsight_ggplot2 [<-,innsight_ggplot2-method [<-.innsight_ggplot2 [[,innsight_ggplot2-method [[.innsight_ggplot2 [[<-,innsight_ggplot2-method [[<-.innsight_ggplot2 |
Indexing plots of 'innsight_plotly' | [,innsight_plotly-method [.innsight_plotly [[,innsight_plotly-method [[.innsight_plotly |
Generic add function for 'innsight_ggplot2' | +,innsight_ggplot2,ANY-method +.innsight_ggplot2 |
Super class for model-agnostic interpretability methods | AgnosticWrapper |
Connection weights method | ConnectionWeights |
Converted torch-based model | ConvertedModel |
Converter of an artificial neural network | Converter |
Deep learning important features (DeepLift) | DeepLift |
Deep Shapley additive explanations (DeepSHAP) | DeepSHAP |
Expected Gradients | ExpectedGradient |
Get the result of an interpretation method | get_result |
Vanilla Gradient and Gradient\timesInput | Gradient |
Super class for gradient-based interpretation methods | GradientBased |
S4 class for ggplot2-based plots | innsight_ggplot2 |
S4 class for plotly-based plots | innsight_plotly |
Syntactic sugar for object construction | convert innsight_sugar run_cw run_deeplift run_deepshap run_expgrad run_grad run_intgrad run_lime run_lrp run_shap run_smoothgrad |
Integrated Gradients | IntegratedGradient |
Super class for interpreting methods | InterpretingMethod |
Local interpretable model-agnostic explanations (LIME) | LIME |
Layer-wise relevance propagation (LRP) | LRP |
Get the result of an interpretation method | plot_global |
Generic print, plot and show for 'innsight_ggplot2' | plot,innsight_ggplot2-method plot.innsight_ggplot2 print,innsight_ggplot2-method print.innsight_ggplot2 show,innsight_ggplot2-method show.innsight_ggplot2 |
Generic print, plot and show for 'innsight_plotly' | plot,innsight_plotly-method plot.innsight_plotly print,innsight_plotly-method print.innsight_plotly show,innsight_plotly-method show.innsight_plotly |
Shapley values | SHAP |
SmoothGrad and SmoothGrad\timesInput | SmoothGrad |