
Package: HMMpa (via r-universe)
March 5, 2025

Type Package

Title Analysing Accelerometer Data Using Hidden Markov Models

Version 1.0.2

Date 2025-01-27

Description Analysing time-series accelerometer data to quantify
length and intensity of physical activity using hidden Markov
models. It also contains the traditional cut-off point method.
Witowski V, Foraita R, Pitsiladis Y, Pigeot I, Wirsik N (2014).
<doi:10.1371/journal.pone.0114089>.

Depends R (>= 2.10.0)

Imports graphics, stats

URL https://github.com/bips-hb/HMMpa

BugReports https://github.com/bips-hb/HMMpa/issues

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Repository https://bips-hb.r-universe.dev

RemoteUrl https://github.com/bips-hb/HMMpa

RemoteRef HEAD

RemoteSha 7f2ddcc4d8a4cefc555af091adfee09df4ae1a28

Contents
HMMpa-package . 2
AIC_HMM . 5
Baum_Welch_algorithm . 7
BIC_HMM . 11
cut_off_point_method . 12
dgenpois . 16

1

https://doi.org/10.1371/journal.pone.0114089
https://github.com/bips-hb/HMMpa
https://github.com/bips-hb/HMMpa/issues

2 HMMpa-package

direct_numerical_maximization . 17
forward_backward_algorithm . 20
HMM_based_method . 22
HMM_decoding . 26
HMM_simulation . 30
HMM_training . 33
initial_parameter_training . 37
local_decoding_algorithm . 40
pgenpois . 42
rgenpois . 43
Viterbi_algorithm . 45

Index 48

HMMpa-package Analysing Accelerometer Data Using Hidden Markov Models

Description

This package provides functions for analyzing accelerometer output data (known as a time-series
of (impulse)-counts) to quantify length and intensity of physical activity.

Details

Usually, so called activity ranges are used to classify an activity as "sedentary", "moderate" and so
on. Activity ranges are separated by certain thresholds (cut-off points). The choice of these cut-off
points depends on different components like the subjects’ age or the type of accelerometer device.

Cut-off point values and defined activity ranges are important input values of the following analyz-
ing tools provided by this package:

1. Cut-off point method: Assigns an activity range to a count based on its total magnitude inde-
pendently of other counts.

2. HMM-based method: Assigns an activity range to a count using a stochastic hidden Markov
model (HMM), which identifies the physical activity states underlying the given time-series.

The HMM procedure for analyzing accelerometer data can be summarized as follows:

1. Train an HMM to estimate the number of hidden physical activity states (m) and model parameters
(delta, gamma, distribution_theta).

2. Decode the trained HMM to classify accelerometer counts into m states.

3. Assign activity ranges based on the total magnitudes of the corresponding states.

Author(s)

Maintainer: Foraita Ronja <foraita@leibniz-bips.de> (ORCID)

Authors:

• Vitali Witowski

https://orcid.org/0000-0003-2216-6653

HMMpa-package 3

References

Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I., Wirsik, N. (2014) Using hidden Markov models
to improve quantifying physical activity in accelerometer data - A simulation study. PLOS ONE.
9(12), e114089. doi:10.1371/journal.pone.0114089

See Also

Useful links:

• https://github.com/bips-hb/HMMpa

• Report bugs at https://github.com/bips-hb/HMMpa/issues

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Traditional Cut-off-point method ------------------------
traditional_cut_off_point_method <-

cut_off_point_method(
x = x,
cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

HMM-based Cut-off-point method --------------------------
Use a (m = 4 state) hidden Markov model based on the
generalized poisson distribution to assign an
activity range to the counts.

In this example three activity ranges
(named as "light", "moderate" and "vigorous" physical activity)
are separated by the two cut-points 15 and 23.

HMM_based_cut_off_point_method <-
HMM_based_method(

x = x,

https://doi.org/10.1371/journal.pone.0114089
https://github.com/bips-hb/HMMpa
https://github.com/bips-hb/HMMpa/issues

4 HMMpa-package

cut_points = c(15,23),
min_m = 4,
max_m = 4,
names_activity_ranges = c("LIG","MOD","VIG"),
distribution_class = "genpois",
training_method = "numerical",
DNM_limit_accuracy = 0.05,
DNM_max_iter = 10,
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

The HMM-based approach can be split into three steps ---------
1) Training of a HMM for given time-series of accelerometer counts
Here: A poisson distribution is trained based on a HMM for
m = 2,..., 6 states.
Select the HMM with the most plausibel m.

m_trained_HMM <- HMM_training(x = x,
min_m = 2,
max_m = 6,

distribution_class = "pois")$trained_HMM_with_selected_m

2) Decoding the trained HMM to extract hidden physical
activity (PA) levels

hidden_PA_levels <- HMM_decoding(x = x,
m = m_trained_HMM$m,

delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,

distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta)

hidden_PA_levels <- hidden_PA_levels$decoding_distr_means

3) Assigning user-specified activity ranges to the accelerometer
counts via the total magnitudes of their corresponding
hidden PA-level
Here: 4 activity levels ("sedentary", "light", "moderate" and
"vigorous" physical activity) are separated by
3 cut-point (5, 15, 23)

HMM_based_cut_off_point_method <-
cut_off_point_method(x = x,

hidden_PA_levels = hidden_PA_levels,
cut_points = c(5,15,23),

names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),

plotting = 1)

AIC_HMM 5

Simulate data of a large time-series of highly scattered counts ----
x <- HMM_simulation(size = 1500,

m = 10,
gamma = 0.93 * diag(10) + rep(0.07 / 10, times = 10),
distribution_class = "norm",
distribution_theta = list(mean = c(10, 100, 200, 300, 450,

600, 700, 900, 1100, 1300, 1500),
sd = c(rep(100,times=10))),
obs_round=TRUE,
obs_non_neg=TRUE,
plotting=5)$observations

Compare results of the tradional cut-point method
and the (6-state-normal-)HMM based method

traditional_cut_off_point_method <-
cut_off_point_method(x = x,

cut_points = c(200,500,1000),
names_activity_ranges = c("SED","LIG","MOD","VIG"),
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

HMM_based_cut_off_point_method <-
HMM_based_method(x = x,

max_scaled_x = 200,
cut_points = c(200,500,1000),
min_m = 6,
max_m = 6,
BW_limit_accuracy = 0.5,
BW_max_iter = 10,
names_activity_ranges = c("SED","LIG","MOD","VIG"),
distribution_class = "norm",
bout_lengths = c(1,1,2,4,5,10,11,20,21,60,61,260),
plotting = 1)

AIC_HMM AIC Value for a Discrete Time Hidden Markov Model

Description

Computes the Aikaike’s information criterion and the Bayesian information criterion for a discrete
time hidden Markov model, given a time-series of observations.

Usage

AIC_HMM(logL, m, k)

6 AIC_HMM

Arguments

logL logarithmized likelihood of the model

m integer number of states in the Markov chain of the model

k single integer value representing the number of parameters of the underlying
distribution of the observation process (e.g. k=2 for the normal distribution
(mean and standard deviation))

Details

For a discrete-time hidden Markov model, AIC and BIC are as follows (MacDonald & Zucchini
(2009, Paragraph 6.1 and A.2.3)):

AIC = −2logL+ 2p

BIC = −2logL+ p log T

where T indicates the length/size of the observation time-series and p denotes the number of inde-
pendent parameters of the model. In case of a HMM as provided by this package, where k and m
are defined as in the arguments above, p can be calculated as follows:

p = m2 + km− 1.

Value

The AIC or BIC value of the fitted hidden Markov model.

Author(s)

Based on MacDonald & Zucchini (2009, Paragraph 6.1 and A.2.3). Implementation by Vitali
Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

BIC_HMM, HMM_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,

Baum_Welch_algorithm 7

40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assummptions (probability vector, transition matrix,
and distribution parameters)

delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(length(delta)) + rep(0.3 / length(delta))
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4,9,17,25))

log-likelihood
logL <- forward_backward_algorithm (x = x,

delta = delta, gamma=gamma,
distribution_class= distribution_class,
distribution_theta=distribution_theta)$logL

the Poisson distribution has one paramter, hence k=1
AIC_HMM(logL = logL, m = length(delta), k = 1)
BIC_HMM(size = length(x) , logL = logL, m = length(delta), k = 1)

Baum_Welch_algorithm Estimation Using the Baum-Welch Algorithm

Description

Estimates the parameters of a (non-stationary) discrete-time hidden Markov model. The Baum-
Welch algorithm is a version of the EM (Estimation/Maximization) algorithm. See MacDonald &
Zucchini (2009, Paragraph 4.2) for further details.

Usage

Baum_Welch_algorithm(
x,
m,
delta,
gamma,
distribution_class,
distribution_theta,
discr_logL = FALSE,
discr_logL_eps = 0.5,
BW_max_iter = 50,
BW_limit_accuracy = 0.001,
BW_print = TRUE,
Mstep_numerical = FALSE,
DNM_limit_accuracy = 0.001,
DNM_max_iter = 50,

8 Baum_Welch_algorithm

DNM_print = 2
)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m integer; a (finite) number of states in the hidden Markov chain.

delta vector object containing starting values for the marginal probability distribution
of the m states of the Markov chain at the time point t=1 for the Baum-Welch
algorithm.

gamma a matrix (ncol=nrow=m) containing starting values for the transition matrix of
the hidden Markov chain

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported: Poisson (pois); generalized Poisson (genpois, param-
eter estimation via the Baum-Welch algorithm is only supported if the M-step is
performed numerically, i.e. if Mstep_numerical = TRUE); normal (norm)

distribution_theta

a list object containing starting values for the parameters of the m observation
distributions of the observation process that are dependent on the hidden Markov
state.

discr_logL a logical object indicating whether the discrete log-likelihood should be used
(for distribution_class="norm") for estimating the model specific parame-
ters instead of the general log-likelihood. See MacDonald & Zucchini (2009,
Paragraph 1.2.3) for further details. Default value is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete likelihood for a
hidden Markov model based on nomal distributions (for "norm"). Default value
is 0.5. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for further details.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default value is TRUE.

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm shall be performed by numerical maximization using the nlm-function.
Default value is FALSE.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 0.001.

Baum_Welch_algorithm 9

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 50.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

Value

Baum_Welch_algorithm returns a list containing the estimated parameters of the hidden Markov
model and other components. See MacDonald & Zucchini (2009, Paragraph 4.2) for further details
on the calculated objects within this algorithm.

x input time-series of observations.

m input number of hidden states in the Markov chain.

zeta a (T,m)-matrix (when T indicates the length/size of the observation time-series and m the
number of states of the HMM) containing probabilities (estimates of the conditional expecta-
tions of the missing data given the observations and the estimated model specific parameters)
calculated by the algorithm. See MacDonald & Zucchini (2009, Paragraph 4.2.2) for further
details.

eta a (T,m,m)-dimensional-array (when T indicates the length of the observation time-series and
m the number of states of the HMM) containing probabilities (estimates of the conditional
expectations of the missing data given the observations and the estimated model specific pa-
rameters) calculated by the algorithm. See MacDonald & Zucchini (2009, Paragraph 4.2.2)
for further details.

logL a numerical value representing the logarithmized likelihood calculated by the forward_backward_algorithm.

iter number of performed iterations.

BIC a numerical value representing the Bayesian information criterion for the hidden Markov
model with estimated parameters.

delta a vector object containing the estimates for the marginal probability distribution of the m
states of the Markov chain at time-point point t=1.

gamma a matrix containing the estimates for the transition matrix of the hidden Markov chain.

... other input values (as arguments above). In the case that the algorithm stops before the targeted
accuracy or the maximum number of iterations has been reached, further values are displayed
and the estimates from the last successful iteration step are saved.

Author(s)

The basic algorithm for a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
4.2, Paragraph A.2.3). Extension and implementation by Vitali Witowski (2013).

References

Baum, L., Petrie, T., Soules, G., Weiss, N. (1970). A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of markov chains. The annals of mathematical statistics,
vol. 41(1), 164–171.

10 Baum_Welch_algorithm

Dempster, A., Laird, N., Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), vol. 39(1), 1–38.

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, direct_numerical_maximization, forward_backward_algorithm,
initial_parameter_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assumptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <- 4
delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(m) + rep(0.3 / m)
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4,9,17,25))

Estimation of a HMM using the Baum-Welch algorithm

trained_HMM_with_m_hidden_states <-
Baum_Welch_algorithm(x = x,

m = m,
delta = delta,
gamma = gamma,

distribution_class = distribution_class,
distribution_theta = distribution_theta)

print(trained_HMM_with_m_hidden_states)

BIC_HMM 11

BIC_HMM BIC Value for a Discrete Time Hidden Markov Model

Description

Computes the Aikaike’s information criterion and the Bayesian information criterion for a discrete
time hidden Markov model, given a time-series of observations.

Usage

BIC_HMM(size, m, k, logL)

Arguments

size length of the time-series of observations x (also T)

m integer number of states in the Markov chain of the model

k single integer value representing the number of parameters of the underlying
distribution of the observation process (e.g. k=2 for the normal distribution
(mean and standard deviation))

logL logarithmized likelihood of the model

Details

For a discrete-time hidden Markov model, AIC and BIC are as follows (MacDonald & Zucchini
(2009, Paragraph 6.1 and A.2.3)):

AIC = −2logL+ 2p

BIC = −2logL+ p log T

where T indicates the length/size of the observation time-series and p denotes the number of inde-
pendent parameters of the model. In case of a HMM as provided by this package, where k and m
are defined as in the arguments above, p can be calculated as follows:

p = m2 + km− 1.

Value

The AIC or BIC value of the fitted hidden Markov model.

Author(s)

Based on MacDonald & Zucchini (2009, Paragraph 6.1 and A.2.3). Implementation by Vitali
Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

12 cut_off_point_method

See Also

AIC_HMM, HMM_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assummptions (probability vector, transition matrix,
and distribution parameters)

delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(length(delta)) + rep(0.3 / length(delta))
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4,9,17,25))

log-likelihood
logL <- forward_backward_algorithm (x = x,

delta = delta, gamma=gamma,
distribution_class= distribution_class,
distribution_theta=distribution_theta)$logL

the Poisson distribution has one paramter, hence k=1
AIC_HMM(logL = logL, m = length(delta), k = 1)
BIC_HMM(size = length(x) , logL = logL, m = length(delta), k = 1)

cut_off_point_method Cut-Off Point Method for Assigning Physical Activity Patterns

Description

This function assigns an activity range to each observation of a time-series, such as for a sequence of
impulse counts recorded by an accelerometer. The activity ranges are defined by thresholds called
“cut-off points”. Furthermore, bout periods are analysed (see Details for further informations).

cut_off_point_method 13

Usage

cut_off_point_method(
x,
cut_points,
names_activity_ranges = NA,
hidden_PA_levels = NA,
bout_lengths = NULL,
plotting = 0

)

Arguments

x a vector object of length T containing non-negative observations of a time-series,
such as a sequence of accelerometer impulse counts.

cut_points a vector object containing cut-off points to separate activity ranges. For instance,
the vector c(7,15,23) separates the four activity ranges [0,7);[7,15);[15,23);[23,Inf).

names_activity_ranges

an optional character string vector to name the activity ranges induced by the
cut-points. This vector must contain one element more than the vector cut_points.

hidden_PA_levels

an optional vector object of length T containing a sequence of the estimated
hidden physical activity levels (i.e. means) underlying the time-series of ac-
celerometer counts. Such a sequence can be extracted by decoding a trained
hidden Markov model. The cut-point method classifies then each count by its
level in the hidden Markov chain that generates the physical activity counts,
and does not use the observed count value (see HMM_based_method for further
details). Default is NA (for the traditional cut-point method).

bout_lengths a vector object (with even number of elemets) to define the range of the bout
intervals (see Details for the definition of bouts). For instance, bout_lengths =
c(1,1,2,2,3,10,11,20,1,20) defines the five bout intervals [1,1] (1 count);
[2,2] (2 counts); [3,10] (3-10 counts); [11,20] (11-20 counts); [1,20] (1-20
counts - overlapping with other bout intervalls is possible). Default value is
bout_lengths=NULL.

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: time series of activity counts, classified into activity ranges
3: time series of bouts (and, if available, the sequence of the estimated hidden
physical activity levels, extracted by decoding a trained HMM, in green color)
4: barplots of absolute and relative frequencies of time spent in different activity
ranges
5: barplots of absolute frequencies of different bout intervals (overall and by
activity ranges)

14 cut_off_point_method

Details

A bout is defined as a period of time spending a defined intensity of physical activities in a specified
physical activity range, without switching to activity intensities in a different activity range.

Value

cut_off_point_method returns a list containing the extracted sequence of activity ranges and
plots key figures.

activity_ranges an array object containing the cut-off intervals that indicate the activity ranges.

classification an integer vector containing the sequence of activity ranges that were assigned to the
observed time-series of accelerometer counts. If hidden_PA_levels=NA, then classification
is the output of the traditional cut-point method, meaning that an activity range has been as-
signed to each accelerometer count over its observed value actual position. In case when
hidden_PA_levels is available, classification is the output of the extendend cut-point
method using hidden Markov models (see HMM_based_method for further details).

classification_per_activity_range a pairlist object containing the classification of the observed
counts by the assigned activity range.

freq_acitvity_range table object containing the absolute frequencies of classifications into activity
ranges.

rel_freq_acitvity_range table object containing the relative frequencies of classifications into ac-
tivity ranges.

quantity_of_bouts overall number of bouts.

bout_periods an array including the bout length assigned to acitiy ranges.

abs_freq_bouts_el a pairlist object containing the absolute frequency of bout length per epoch
length (aggregated).

Author(s)

Vitali Witowski (2013)

See Also

HMM_based_method

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,

cut_off_point_method 15

5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

1) Traditional cut point method -----------------------
Assigning activity ranges to activity counts using
fictitious cut-off points that produce the four activity
ranges "sedentary"", "light"", "moderate"", and "vigorous".

solution_of_traditional_cut_off_point_method <-
cut_off_point_method(x = x,

cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),

bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,13,40,41,265,1,265),
plotting = 0)

print(solution_of_traditional_cut_off_point_method)

2) Extension of the traditional cut_point method
using HMMs
The following three steps define an extension of the
traditional cut-off method by first extracting the hidden
physical activity pattern behind the accelerometer counts
using a HMM (those three steps are basically combined in
the function HMM_based_method, see HMM_based_method for
further details and references):

Step 1 ---
Train hidden Markov model for different number of
states m=2,...,6 and select the model with the most
plausible m

m_trained_HMM <-
HMM_training(x = x,

min_m = 2,
max_m = 6, BW_print=FALSE,
distribution_class = "pois")$trained_HMM_with_selected_m

Step 2 ---
Decode the trained HMM (by using the
Viterbi algorithm (global decoding)) to get the estimated
sequence of hidden physical activity levels
underlying the the accelerometer counts

You have to compute 'm_trained_HMM' first (see Step 1)

global_decoding <-
HMM_decoding(x = x,

m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,

16 dgenpois

decoding_method = "global")
hidden_PA_levels <- global_decoding$decoding_distr_means

Step 3 ---
Assigning activity ranges to activity counts using the
information extracted by decoding the HMM for the counts
(PA-levels) and fictitious cut-off points that produce
four so-called activity ranges:"sedentary", "light",
"moderate" and "vigorous":

You have to compute 'm_trained_HMM' and 'hidden_PA_levels' first (see above)

solution_of_HMM_based_cut_off_point_method <-
cut_off_point_method(x = x,

hidden_PA_levels = hidden_PA_levels,
cut_points = c(5,15,23),
names_activity_ranges = c("SED","LIG","MOD","VIG"),

bout_lengths = c(1,1,2,2,3,3,4,4,5,5,6,12,13,40,41,265,1,265),
plotting=1)

dgenpois The Generalized Poisson Distribution

Description

Density function for the generalized Poisson distribution.

Usage

dgenpois(x, lambda1, lambda2)

Arguments

x a vector of (non-negative integer) quantiles

lambda1 a single numeric value for parameter lambda1 with lambda1 > 0

lambda2 a single numeric value for parameter lambda2 with 0 ≤ lamdba2 < 1. When
lambda2=0, the generalized Poisson distribution reduces to the Poisson distri-
bution

Details

The generalized Poisson distribution has the density

p(x) = λ1(λ1 + λ2 · x)x−1 exp(−λ1 − λ2 · x))
x!

for x = 0, 1, 2, . . .,b with E(X) = λ1

1−λ2
and variance var(X) = λ1

(1−λ2)3
.

direct_numerical_maximization 17

Value

dgenpois gives the density of the generalized Poisson distribution.

Author(s)

Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).

References

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and
comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.

See Also

pgenpois, rgenpois; Distributions for other standard distributions, including dpois for the Poisson
distribution.

Examples

dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5)
pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5)
hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5))

direct_numerical_maximization

Estimation by Directly Maximizing the log-Likelihood

Description

Estimates the parameters of a (stationary) discrete-time hidden Markov model by directly maxi-
mizing the log-likelihood of the model using the nlm-function. See MacDonald & Zucchini (2009,
Paragraph 3) for further details.

Usage

direct_numerical_maximization(
x,
m,
delta,
gamma,
distribution_class,
distribution_theta,
DNM_limit_accuracy = 0.001,
DNM_max_iter = 50,
DNM_print = 2

)

18 direct_numerical_maximization

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m interger ;a (finite) number of states in the hidden Markov chain
delta a vector object containing starting values for the marginal probability distribu-

tion of the m states of the Markov chain at the time point t=1. This implementa-
tion of the algorithm uses the stationary distribution as delta.

gamma a matrix (nrow=ncol=m) containing starting values for the transition matrix of
the hidden Markov chain

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm, discrete log-Likelihood not applicable by this algo-
rithm)

distribution_theta

a list object containing starting values for the parameters of the m observation
distributions that are dependent on the hidden Markov state

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the direct nu-
merical maximization algorithm using the nlm-function. Default value is 0.001.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
direct numerical maximization using the nlm-function. Default value is 50.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

Value

direct_numerical_maximization returns a list containing the estimated parameters of the hid-
den Markov model and other components.

x input time-series of observations.
m input number of hidden states in the Markov chain.
logL a numerical value representing the logarithmized likelihood calculated by the forward_backward_algorithm.
AIC a numerical value representing Akaike’s information criterion for the hidden Markov model

with estimated parameters.
BIC a numerical value representing the Bayesian information criterion for the hidden Markov

model with estimated parameters.
delta a vector object containing the estimates for the marginal probability distribution of the m

states of the Markov chain at time-point point t=1.
gamma a matrix containing the estimates for the transition matrix of the hidden Markov chain.
distribution_theta a list object containing estimates for the parameters of the m observation distri-

butions that are dependent on the hidden Markov state.
distribution_class input distribution class.

direct_numerical_maximization 19

Author(s)

The basic algorithm of a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
A.1). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, Baum_Welch_algorithm, forward_backward_algorithm, initial_parameter_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assumptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <- 4
delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(m) + rep(0.3 / m)
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4,9,17,25))

Estimation of a HMM using the method of
direct numerical maximization

trained_HMM_with_m_hidden_states <-
direct_numerical_maximization(x = x,

m = m,
delta = delta,
gamma = gamma,

distribution_class = distribution_class,
DNM_max_iter = 100,

distribution_theta = distribution_theta)

print(trained_HMM_with_m_hidden_states)

20 forward_backward_algorithm

forward_backward_algorithm

Calculating Forward and Backward Probabilities and Likelihood

Description

The function calculates the logarithmized forward and backward probabilities and the logarithmized
likelihood for a discrete time hidden Markov model, as defined in MacDonald & Zucchini (2009,
Paragraph 3.1- Paragraph 3.3 and Paragraph 4.1).

Usage

forward_backward_algorithm(
x,
delta,
gamma,
distribution_class,
distribution_theta,
discr_logL = FALSE,
discr_logL_eps = 0.5

)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (nrow=ncol=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following distri-
butions are supported: Poisson (pois); generalized Poisson (genpois); normal
(norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
of the observation process that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm") instead of the general log-likelihood. See Mac-
Donald & Zucchini (2009, Paragraph 1.2.3) for further details. Default is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on normal distributions (for "norm"). The
default value is 0.5. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for
further details.

forward_backward_algorithm 21

Value

forward_backward_algorithm returns a list containing the logarithmized forward and backward
probabilities and the logarithmized likelihood.

log_alpha a (T,m)-matrix (when T indicates the length/size of the observation time-series and m
the number of states of the HMM) containing the logarithmized forward probabilities.

log_beta a (T,m)-matrix (when T indicates the length/size of the observation time-series and m the
number of states of the HMM) containing the logarithmized backward probabilities.

logL a single numerical value representing the logarithmized likelihood.

logL_calculation a single character string object which indicates how logL has been calculated
(see Zucchini (2009) Paragraph 3.1-3.4, 4.1, A.2.2, A.2.3 for further details).

Author(s)

The basic algorithm for a Poisson-HMM is provided by MacDonald & Zucchini (2009, Paragraph
A.2.2). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

HMM_based_method, HMM_training, Baum_Welch_algorithm, direct_numerical_maximization,
initial_parameter_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assumptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <- 4
delta <- c(0.25,0.25,0.25,0.25)
gamma <- 0.7 * diag(m) + rep(0.3 / m)
distribution_class <- "pois"

22 HMM_based_method

distribution_theta <- list(lambda = c(4,9,17,25))

Calculating logarithmized forward/backward probabilities
and logarithmized likelihood

forward_and_backward_probabilities_and_logL <-
forward_backward_algorithm (x = x,

delta = delta,
gamma = gamma,

distribution_class = distribution_class,
distribution_theta = distribution_theta)

print(forward_and_backward_probabilities_and_logL)

HMM_based_method Hidden Markov Method for Predicting Physical Activity Patterns

Description

This function assigns a physical activity range to each observation of a time-series (such as a se-
quence of impulse counts recorded by an accelerometer) using hidden Markov models (HMM). The
activity ranges are defined by thresholds called cut-off points. Basically, this function combines
HMM_training, HMM_decoding and cut_off_point_method. See Details for further information.

Usage

HMM_based_method(
x,
cut_points,
distribution_class,
min_m = 2,
max_m = 6,
n = 100,
max_scaled_x = NA,
names_activity_ranges = NA,
discr_logL = FALSE,
discr_logL_eps = 0.5,
dynamical_selection = TRUE,
training_method = "EM",
Mstep_numerical = FALSE,
BW_max_iter = 50,
BW_limit_accuracy = 0.001,
BW_print = TRUE,
DNM_max_iter = 50,
DNM_limit_accuracy = 0.001,
DNM_print = 2,

HMM_based_method 23

decoding_method = "global",
bout_lengths = NULL,
plotting = 0

)

Arguments

x a vector object of length T containing non-negative observations of a time-series,
such as a sequence of accelerometer impulse counts, which are assumed to be
realizations of the (hidden Markov state dependent) observation process of a
HMM.

cut_points a vector object containing cut-off points to separate activity ranges. For instance,
the vector c(7,15,23) separates the four activity ranges [0,7), [7,15), [15,23)
and [23,Inf).

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following distri-
butions are supported: Poisson (pois); generalized Poisson (genpois); normal
(norm)).

min_m miminum number of hidden states in the hidden Markov chain. Default value is
2.

max_m maximum number of hidden states in the hidden Markov chain. Default value is
6.

n a single numerical value specifying the number of samples. Default value is
100.

max_scaled_x an optional numerical value, to be used to scale the observations of the time-
series x before the hidden Markov model is trained and decoded (see Details).
Default value is NA.

names_activity_ranges

an optional character string vector to name the activity ranges induced by the
cut-points. This vector must contain one element more than the vector cut_points.

discr_logL a logical object indicating whether the discrete log-likelihood should be used
(for "norm") for estimating the model specific parameters instead of the general
log-likelihood. See MacDonald & Zucchini (2009, Paragraph 1.2.3) for further
details. Default is FALSE.

discr_logL_eps a single numerical value to approximate the discrete log-likelihood for a hidden
Markov model based on nomal distributions (for distribution_class="norm").
The default value is 0.5.

dynamical_selection

a logical value indicating whether the method of dynamical initial parameter
selection should be applied (see HMM_training for details). Default is TRUE.

training_method

a logical value indicating whether the Baum-Welch algorithm ("EM") or the
method of direct numerical maximization ("numerical") should be applied for
estimating the model specific parameters of the HMM. See Baum_Welch_algorithm
and direct_numerical_maximization for further details. Default is training_method
= "EM".

24 HMM_based_method

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm shall be performed by numerical maximization. Default is FALSE.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default is TRUE.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 50.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm function (used to perform the M-step of
the Baum-Welch-algorithm). Default value is 0.001.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

decoding_method

a string object to choose the applied decoding-method to decode the HMM given
the time-series of observations x. Possible values are "global" (for the use of
the Viterbi_algorithm) and "local" (for the use of the local_decoding_algorithm).
Default value is "global".

bout_lengths a vector object (with even number of elemets) to define the range of the bout
intervals (see Details for the definition of bouts). For instance, bout_lengths =
c(1,1,2,2,3,10,11,20,1,20) defines the five bout intervals [1,1] (1 count);
[2,2] (2 counts); [3,10] (3-10 counts); [11,20] (11-20 counts); [1,20] (1-20
counts - overlapping with other bout intervalls is possible). Default value is
bout_lengths=NULL.

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: time series of activity counts, classified into activity ranges
3: time series of bouts (and, if available, the sequence of the estimated hidden
physical activity levels, extracted by decoding a trained HMM, in green colour)
4: barplots of absolute and relative frequencies of time spent in different activity
ranges
5: barplots of relative frequencies of the lenghts of bout intervals (overall and
by activity ranges)

Details

The function combines HMM_training, HMM_decoding and cut_off_point_method as follows:

HMM_based_method 25

Step 1: HMM_training trains the most likely HMM for a given time-series of accelerometer counts.
Step 2: HMM_decoding decodes the trained HMM (Step 1) into the most likely sequence of hidden
states corresponding to the given time-series of observations (respectively the most likely sequence
of physical activity levels corresponding to the time-series of accelerometer counts).
Step 3. cut_off_point_method assigns an activity range to each accelerometer count by its hidden
physical activity level (extracted in Step 2).

Value

HMM_based_method returns a list containing the output of the trained hidden Markov model, includ-
ing the selected number of states m (i.e., number of physical activities) and plots key figures.

trained_HMM_with_selected_m a list object containing the trained hidden Markov model in-
cluding the selected number of states m (see HMM_training for further details).

decoding a list object containing the output of the decoding (see HMM_decoding for further details).

extendend_cut_off_point_method a list object containing the output of the cut-off point method.
The counts x are classified into the activity ranges by the corresponding sequence of hidden
PA-levels, which were decoded by the HMM (see cut_off_point_method for further details).

Note

The parameter max_scaled_x can be applied to scale the values of the observations. This might
prevent the alogrithm from numerical instabilities. At the end, the results are internaly rescaled
to the original scale. For instance, a value of max_scaled_x=200 shrinks the count values of the
complete time-series x to a maximum of 200. Training and decoding of the HMM is carried out
using the scaled time-series.
From our experience, especially time-series with observations values >1500, or where T > 1000,
show numerical instabilities. We then advice to make use of max_scaled_x .

The extention of the cut-off point method using a Poisson based HMM has been provided and
evaluated successfully on simulated data firstly by Barbara Brachmann in her diploma thesis (see
References).

Author(s)

Vitali Witowski (2013).

References

Brachmann, B. (2011). Hidden-Markov-Modelle fuer Akzelerometerdaten. Diploma Thesis, Uni-
versity Bremen - Bremen Institute for Prevention Research and Social Medicine (BIPS).

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

Witowski, V., Foraita, R., Pitsiladis, Y., Pigeot, I., Wirsik, N. (2014) Using hidden Markov models
to improve quantifying physical activity in accelerometer data - A simulation study. PLOS ONE.
9(12), e114089. doi:10.1371/journal.pone.0114089

https://doi.org/10.1371/journal.pone.0114089

26 HMM_decoding

See Also

initial_parameter_training, Baum_Welch_algorithm, direct_numerical_maximization, AIC_HMM,
BIC_HMM, HMM_training, Viterbi_algorithm, local_decoding_algorithm, cut_off_point_method

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Assumptions (number of states, probability vector,
transition matrix, and distribution parameters)

m <- 4
delta <- c(0.25, 0.25, 0.25, 0.25)
gamma <- 0.7 * diag(m) + rep(0.3 / m)
distribution_class <- "pois"
distribution_theta <- list(lambda = c(4, 9, 17, 25))

HMM_decoding Algorithm for Decoding Hidden Markov Models (local or global)

Description

The function decodes a hidden Markov model into a most likely sequence of hidden states. Further-
more this function provides estimated observation values along the most likely sequence of hidden
states. See Details for more information.

Usage

HMM_decoding(
x,
m,
delta,
gamma,
distribution_class,
distribution_theta,
decoding_method = "global",

HMM_decoding 27

discr_logL = FALSE,
discr_logL_eps = 0.5

)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m integer; (finite) number of states in the hidden Markov chain.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

decoding_method

a string object to choose the applied decoding-method to decode the HMM given
the time-series of observations x. Possible values are "global" (for the use of
the Viterbi_algorithm) and "local" (for the use of the local_decoding_algorithm).
Default value is "global".

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

Details

More precisely, the function works as follows:

Step 1: In a first step, the algorithm decodes a HMM into the most likely sequence of hidden states,
given a time-series of observations. The user can choose between a global and a local approch.
If decoding_method="global" is applied, the function calls Viterbi_algorithm to determine the
sequence of most likely hidden states for all time points simultaneously.
If decoding_method="local" is applied, the function calls local_decoding_algorithm to deter-
mine the most likely hidden state for each time point seperately.

Step 2: In a second step, this function links each observation to the mean of the distribution, that
corresponds to the decoded state at this point in time.

28 HMM_decoding

Value

HMM_decoding returns a list containing the following two components:

decoding_method a string object indicating the applied decoding method.

decoding a numerical vector containing the most likely sequence of hidden states as decoded by
the Viterbi_algorithm (if "global" was applied) or by the local_decoding_algorithm
(if "local" was applied).

decoding_distr_means a numerical vector of estimated oberservation values along the most likely
seuquence of hidden states (see decoding and Step 2).

Author(s)

Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

local_decoding_algorithm, Viterbi_algorithm

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Set graphical parameters
old.par <- par(no.readonly = TRUE)
par(mfrow = c(1,1))

i) Train hidden Markov model -----
for different number of states m=2,...,6 and select the optimal model

m_trained_HMM <-
HMM_training(x = x,

min_m = 2,
max_m = 6,

distribution_class = "pois")$trained_HMM_with_selected_m

HMM_decoding 29

ii) Global decoding -----
Decode the trained HMM using the Viterbi algorithm to get
the estimated sequence of hidden physical activity levels
global_decoding <-

HMM_decoding(
x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,
decoding_method = "global")

Globally most likely sequence of hidden states,
i.e. in this case sequence of activity levels

global_decoding$decoding
plot(global_decoding$decoding)

Plot the observed impulse counts and the most likely
sequence (green) according to the Viterbi algorithm that
generated these observations

plot(x)
lines(global_decoding$decoding_distr_means, col = "green")

iii) Local decoding
Decode the trained HMM using the local decoding algorithm
to get the estimated sequence of hidden physical activity levels

local_decoding <-
HMM_decoding(

x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta,
decoding_method = "local")

Locally most likely sequence of hidden states,
i.e. in this case sequence of activity levels
local_decoding$decoding
plot(local_decoding$decoding)

Plot the observed impulse counts and the most likely
sequence (green) according to the local decoding algorithm
that generated these observations
plot(x)
lines(local_decoding$decoding_distr_means, col = "red")

iv) Comparison of global and local decoding -----

30 HMM_simulation

Comparison of global decoding (green), local decoding (red)
and the connection to the closest mean (blue)
print(global_decoding$decoding)
print(local_decoding$decoding)

Plot comparison
par(mfrow = c(2,2))
plot(global_decoding$decoding[seq(230,260)], col = "green",

ylab = "global decoding",
main = "(zooming)")

plot(x[seq(230,260)], ylab = "global decoding",
main = "(zooming x[seq(230,260)])")
lines(global_decoding$decoding_distr_means[seq(230,260)], col = "green")
plot(local_decoding$decoding[seq(230,260)], col = "red",

ylab = "local decoding", main = "(zooming)")
plot(x[seq(230,260)], ylab = "local decoding",
main = "(zooming x[seq(230,260)])")
lines(local_decoding$decoding_distr_means[seq(230,260)], col = "red")

par(old.par)

HMM_simulation Generating Realizations of a Hidden Markov Model

Description

This function generates a sequence of hidden states of a Markov chain and a corresponding parallel
sequence of observations.

Usage

HMM_simulation(
size,
m,
delta = rep(1/m, times = m),
gamma = 0.8 * diag(m) + rep(0.2/m, times = m),
distribution_class,
distribution_theta,
obs_range = c(NA, NA),
obs_round = FALSE,
obs_non_neg = FALSE,
plotting = 0

)

Arguments

size length of the time-series of hidden states and observations (also T).

m a (finite) number of states in the hidden Markov chain.

HMM_simulation 31

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1. Default is delta = rep(1 /
m, times = m).

gamma a matrix (ncol = nrow = m) containing values for the transition matrix of the
hidden Markov chain. Default is gamma=0.8 * diag(m) + rep(0.2 / m, times
= m)

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

obs_range a vector object specifying the range for the observations to be generated. For
instance, the vector c(0,1500) allows only observations between 0 and 1500 to
be generated by the HMM. Default value is FALSE. See Notes for further details.

obs_round a logical object. TRUE if all generated observations are natural. Default value is
FALSE. See Notes for further details.

obs_non_neg a logical object. TRUE, if non negative observations are generated. Default value
is FALSE. See Notes for further details.

plotting a numeric value between 0 and 5 (generates different outputs). NA suppresses
graphical output. Default value is 0.
0: output 1-5
1: summary of all results
2: generated time series of states of the hidden Markov chain
3: means (of the observation distributions, which depend on the states of the
Markov chain) along the time series of states of the hidden Markov chain
4: observations along the time series of states of the hidden Markov chain
5: simulated observations

Value

The function HMM_simulation returns a list containing the following components:
The function HMM_simulation returns a list containing the following components:

size length of the generated time-series of hidden states and observations.

m input number of states in the hidden Markov chain.

delta a vector object containing the chosen values for the marginal probability distribution of the m
states of the Markov chain at the time point t=1.

gamma a matrix containing the chosen values for the transition matrix of the hidden Markov chain.

distribution_class a single character string object with the abbreviated name of the chosen obser-
vation distributions of the Markov dependent observation process.

distribution_theta a list object containing the chosen values for the parameters of the m observation
distributions that are dependent on the hidden Markov state.

32 HMM_simulation

markov_chain a vector object containing the generated sequence of states of the hidden Markov
chain of the HMM.

means_along_markov_chain a vector object containing the sequence of means (of the state de-
pendent distributions) corresponding to the generated sequence of states.

observations a vector object containing the generated sequence of (state dependent) observations
of the HMM.

Note

Some notes regarding the default values:
gamma:
The default setting assigns higher probabilities for remaining in a state than c hanging into another.
obs_range:
Has to be used with caution. since it manipulates the results of the HMM. If a value for an obser-
vation at time t is generated outside the defined range, it will be regenerated as long as it falls into
obs_range. It is possible just to define one boundary, e.g. obs_range=c(NA,2000) for observa-
tions lower than 2000, or obs_range=c(100,NA) for observations higher than 100. obs_round :
Has to be used with caution! Rounds each generated observation and hence manipulates the results
of the HMM (important for the normal distribution based HMM). obs_ non_neg:
Has to be used with caution, since it manipulates the results of the HMM. If a negative value for an
observation at a time t is generated, it will be re-generated as long as it is non-negative (important
for the normal distribution based HMM).

Author(s)

Vitali Witowski (2013).

See Also

AIC_HMM, BIC_HMM, HMM_training

Examples

i.) Generating a HMM with Poisson-distributed data -----

Pois_HMM_data <-
HMM_simulation(size = 300,

m = 5,
distribution_class = "pois",
distribution_theta = list(lambda=c(10,15,25,35,55)))

print(Pois_HMM_data)

ii.) Generating 6 physical activities with normally -----
distributed accelerometer counts using a HMM.

Define number of time points (1440 counts equal 6 hours of
activity counts assuming an epoch length of 15 seconds).
size <- 1440

HMM_training 33

Define 6 possible physical activity ranges
m <- 6

Start with the lowest possible state
(in this case with the lowest physical activity)
delta <- c(1, rep(0, times = (m - 1)))

Define transition matrix to generate according to a
specific activity
gamma <- 0.935 * diag(m) + rep(0.065 / m, times = m)

Define parameters
(here: means and standard deviations for m=6 normal
distributions that define the distribution in
a phsycial acitivity level)
distribution_theta <- list(mean = c(0,100,400,600,900,1200),

sd = rep(x = 200, times = 6))

Assume for each count an upper boundary of 2000
obs_range <-c(NA,2000)

Accelerometer counts shall not be negative
obs_non_neg <-TRUE

Start simulation

accelerometer_data <-
HMM_simulation(size = size,

m = m,
delta = delta,
gamma = gamma,

distribution_class = "norm",
distribution_theta = distribution_theta,

obs_range = obs_range,
obs_non_neg = obs_non_neg,

plotting = 0)
print(accelerometer_data)

HMM_training Training of Hidden Markov Models

Description

Function to estimate the model specific parameters (delta, gamma, distribution_theta) for a
hidden Markov model, given a time-series and a user-defined distribution class. Can also be used
for model selection (selecting the optimal number of states m). See Details for more information.

34 HMM_training

Usage

HMM_training(
x,
distribution_class,
min_m = 2,
max_m = 6,
n = 100,
training_method = "EM",
discr_logL = FALSE,
discr_logL_eps = 0.5,
Mstep_numerical = FALSE,
dynamical_selection = TRUE,
BW_max_iter = 50,
BW_limit_accuracy = 0.001,
BW_print = TRUE,
DNM_max_iter = 50,
DNM_limit_accuracy = 0.001,
DNM_print = 2

)

Arguments

x a vector object of length T containing observations of a time-series x, which are
assumed to be realizations of the (hidden Markov state dependent) observation
process of the HMM.

distribution_class

a single character string object with the abbreviated name of the m observa-
tion distributions of the Markov dependent observation process. The following
distributions are supported: Poisson (pois); generalized Poisson (genpois, only
available for training_method="numerical"); normal (norm)).

min_m minimum number of hidden states in the hidden Markov chain. Default value is
2.

max_m maximum number of hidden states in the hidden Markov chain. Default value is
6.

n a single numerical value specifying the number of samples to find the best start-
ing values for the training algorithm. Default value is n=100.

training_method

a logical value indicating whether the Baum-Welch algorithm ("EM") or the
method of direct numerical maximization ("numerical") should be applied
for estimating the model specific parameters. See Baum_Welch_algorithm and
direct_numerical_maximization for further details.

discr_logL a logical object. Default is FALSE for the general log-likelihood, TRUE for the
discrete log-likelihood (for distribution_class = "norm").

discr_logL_eps a single numerical value, used to approximate the discrete log-likelihood for a
hidden Markov model based on nomal distributions (for "norm"). The default
value is 0.5.

HMM_training 35

Mstep_numerical

a logical object indicating whether the Maximization Step of the Baum-Welch
algorithm should be performed by numerical maximization. Default is FALSE.

dynamical_selection

a logical value indicating whether the method of dynamical initial parameter
selection should be applied (see Details). Default is TRUE.

BW_max_iter a single numerical value representing the maximum number of iterations in the
Baum-Welch algorithm. Default value is 50.

BW_limit_accuracy

a single numerical value representing the convergence criterion of the Baum-
Welch algorithm. Default value is is 0.001.

BW_print a logical object indicating whether the log-likelihood at each iteration-step shall
be printed. Default is TRUE.

DNM_max_iter a single numerical value representing the maximum number of iterations of the
numerical maximization using the nlm-function (used to perform the Maximiza-
tion Step of the Baum-Welch-algorithm). Default value is 50.

DNM_limit_accuracy

a single numerical value representing the convergence criterion of the numerical
maximization algorithm using the nlm function (used to perform the Maximiza-
tion Step of the Baum-Welch- algorithm). Default value is 0.001.

DNM_print a single numerical value to determine the level of printing of the nlm-function.
See nlm-function for further informations. The value 0 suppresses, that no print-
ing will be outputted. Default value is 2 for full printing.

Details

More precisely, the function works as follows:
Step 1: In a first step, the algorithm estimates the model specific parameters for different values of
m (indeed for min_m,...,max_m) using either the function Baum_Welch_algorithm or
direct_numerical_maximization. Therefore, the function first searches for plausible starting
values by using the function initial_parameter_training. Step 2: In a second step, this
function evaluates the AIC and BIC values for each HMM (built in Step 1) using the functions
AIC_HMM and BIC_HMM. Then, based on that values, this function decides for the most plausible
number of states m (respectively for the most appropriate HMM for the given time-series of ob-
servations). In case when AIC and BIC claim for a different m, the algorithm decides for the
smaller value for m (with the background to have a more simplistic model). If the user is intere-
seted in having a HMM with a fixed number for m, min_m and max_m have to be chosen equally
(for instance min_m=4 = max_m for a HMM with m=4 hidden states). To speed up the parameter
estimation for each m > mmin, the user can choose the method of dynamical initial param-
eter selection. If the method of dynamical intial parameter selection is not applied, the func-
tion initial_parameter_training will be called to find plausible starting values for each state
m ∈ {minm, . . . ,maxm}.
If the method of dynamical intial parameter selection is applied, then starting parameter values us-
ing the function initial_parameter_training will be found only for the first HMM (respectively
the HMM with m_min states). The further starting parameter values for the next HMM (with m+1
states and so on) are retained from the trained parameter values of the last HMM (with m states and
so on).

36 HMM_training

Value

HMM_training returns a list containing the following components:

trained_HMM_with_selected_m a list object containing the key data of the optimal trained HMM
(HMM with selected m) – summarized output of the Baum_Welch_algorithm or
direct_numerical_maximization algorithm, respectively.

list_of_all_initial_parameters a list object containing the plausible starting values for all HMMs
(one for each state m).

list_of_all_trained_HMMs a list object containing all trained m-state-HMMs. See Baum_Welch_algorithm
or direct_numerical_maximization for training_method="EM" or training_method="numerical",
respectively.

list_of_all_logLs_for_each_HMM_with_m_states a list object containing all logarithmized Like-
lihoods of each trained HMM.

list_of_all_AICs_for_each_HMM_with_m_states a list object containing the AIC values of all
trained HMMs.

list_of_all_BICs_for_each_HMM_with_m_states a list object containing the BIC values of all
trained HMMs.

model_selection_over_AIC is logical. TRUE, if model selection was based on AIC and FALSE, if
model selection was based on BIC.

Author(s)

Vitali Witowski (2013)

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

initial_parameter_training, Baum_Welch_algorithm, direct_numerical_maximization, AIC_HMM,
BIC_HMM

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,

initial_parameter_training 37

10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train a poisson hidden Markov model using the Baum-Welch
algorithm for different number of states m=2,...,6

trained_HMMs <-
HMM_training(x = x,

min_m = 2,
max_m = 6,

distribution_class = "pois",
training_method = "EM")

Various output values for the HMM
names(trained_HMMs)

Print details of the most plausible HMM for the given
time-series of observations
print(trained_HMMs$trained_HMM_with_selected_m)

Print details of all trained HMMs (by this function)
for the given time-series of observations
print(trained_HMMs$list_of_all_trained_HMMs)

Print the BIC-values of all trained HMMs for the given
time-series of observations
print(trained_HMMs$list_of_all_BICs_for_each_HMM_with_m_states)

Print the logL-values of all trained HMMs for the
given time-series of observations
print(trained_HMMs$list_of_all_logLs_for_each_HMM_with_m_states)

initial_parameter_training

Algorithm to Find Plausible Starting Values for Parameter Estimation

Description

The function computes plausible starting values for both the Baum-Welch algorithm and the algo-
rithm for directly maximizing the log-Likelihood. Plausible starting values can potentially diminish
problems of (i) numerical instability and (ii) not finding the global optimum.

Usage

initial_parameter_training(
x,
m,
distribution_class,

38 initial_parameter_training

n = 100,
discr_logL = FALSE,
discr_logL_eps = 0.5

)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.
distribution_class

a single character string object with the abbreviated name of the m observa-
tion distributions of the Markov dependent observation process. The following
distributions are supported: Poisson (pois); generalized Poisson (genpois, only
available for training_method="numerical"); normal (norm)).

n a single numerical value specifying the number of samples to find the best start-
ing value for the training algorithm. Default value is 100.

discr_logL a logical object. Default is FALSE for the general log-likelihood, TRUE for the
discrete log-likelihood (for distribution_class = "norm").

discr_logL_eps a single numerical value, used to approximate the discrete log-likelihood for a
hidden Markov model based on nomal distributions (for "norm"). The default
value is 0.5.

Details

From our experience, parameter estimation for long time-series of observations (T>1000) or obser-
vation values >1500 tend to be numerical unstable and does not necessarily find a global maximum.
Both problems can eventually be diminished with plausible starting values. Basically, the idea
behind initial_parameter_training is to sample randomly n sets of m observations from the
time-series x, as means (E) of the state-dependent distributions. This n samplings of E, therefore in-
duce n sets of parameters (distribution_theta) for the HMM without running a (slow) parameter
estimation algorithm. Furthermore, initial_parameter_training calculates the log-Likelihood
for all those n sets of parameters. The set of parameters with the best Likelihood are outputted as
plausible starting values.

(Additionally to the n sets of randomly chosen observations as means, the m quantiles of the obser-
vations are also checked as plausible means within this algorithm.)

Value

The function initial_parameter_training returns a list containing the following components:

m input number of states in the hidden Markov chain.

k a single numerical value representing the number of parameters of the defined distribution class
of the observation process.

logL logarithmized likelihood of the model evaluated at the HMM with given starting values
(delta, gamma, distribution theta) induced by E.

initial_parameter_training 39

E randomly choosen means of the observation time-series x, used for the observation distributions,
for which the induced parameters (delta, gamma, distribution theta) produce the largest
Likelihood.

distribution_theta a list object containing the plausible starting values for the parameters of the m
observation distributions that are dependent on the hidden Markov state.

delta a vector object containing plausible starting values for the marginal probability distribution
of the m states of the Markov chain at the time point t=1. At the moment:
delta = rep(1/m, times=m).

gamma a matrix (nrow=ncol=m) containing the plausible starting values for the transition matrix
of the hidden Markov chain. At the moment:
gamma = 0.8 * diag(m) + rep(0.2/m, times=m).

Author(s)

Vitali Witowski (2013).

See Also

Baum_Welch_algorithm, direct_numerical_maximization, HMM_training

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Finding plausibel starting values for the parameter estimation
for a generealized-Pois-HMM with m=4 states

m <- 4

plausible_starting_values <-
initial_parameter_training(x = x,

m = m,
distribution_class = "genpois",

n = 100)

print(plausible_starting_values)

40 local_decoding_algorithm

local_decoding_algorithm

Algorithm for Decoding Hidden Markov Models (local)

Description

The function decodes a hidden Markov model into a most likely sequence of hidden states. Different
to the Viterbi_algorithm, this algorithm determines the most likely hidden state for each time
point seperately.

Usage

local_decoding_algorithm(
x,
m,
delta,
gamma,
distribution_class,
distribution_theta,
discr_logL = FALSE,
discr_logL_eps = 0.5

)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.
delta a vector object containing values for the marginal probability distribution of the

m states of the Markov chain at the time point t=1.
gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden

Markov chain.
distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

local_decoding_algorithm 41

Value

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.

delta a vector object containing values for the marginal probability distribution of the
m states of the Markov chain at the time point t=1.

gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden
Markov chain.

distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

Author(s)

The basic algorithm for a Poisson-HMM can be found in MacDonald & Zucchini (2009, Paragraph
A.2.6). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

See Also

Viterbi_algorithm, HMM_decoding

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,

42 pgenpois

2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train hidden Markov model for m = 4

m_trained_HMM <-
HMM_training(x = x,

min_m = 4,
max_m = 4,

distribution_class = "pois")$trained_HMM_with_selected_m

Decode the trained HMM using the local-decoding algorithm
to get the locally most likely sequence of hidden states
for the time-series of observations
local_decoding <-

local_decoding_algorithm(
x = x,
m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,
distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta)

Most likely sequence of hidden states
print(local_decoding$decoding)
plot(local_decoding$decoding)

pgenpois The Generalized Poisson Distribution

Description

Distribution function for the generalized Poisson distribution.

Usage

pgenpois(q, lambda1, lambda2)

Arguments

q a numeric vector of quantiles

lambda1 a single numeric value for parameter lambda1 with lambda1 > 0

lambda2 a single numeric value for parameter lambda2 with 0 ≤ lamdba2 < 1. When
lambda2=0, the generalized Poisson distribution reduces to the Poisson distri-
bution

rgenpois 43

Details

The generalized Poisson distribution has the density

p(x) = λ1(λ1 + λ2 · x)x−1 exp(−λ1 − λ2 · x))
x!

for x = 0, 1, 2, . . .,b with E(X) = λ1

1−λ2
and variance var(X) = λ1

(1−λ2)3
.

Value

pgenpois gives the distribution function of the generalized Poisson distribution.

Author(s)

Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).

References

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and
comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.

See Also

pgenpois, rgenpois; Distributions for other standard distributions, including dpois for the Poisson
distribution.

Examples

dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5)
pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5)
hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5))

rgenpois The Generalized Poisson Distribution

Description

Density, distribution function and random generation function for the generalized Poisson distribu-
tion.

Usage

rgenpois(n, lambda1, lambda2)

44 rgenpois

Arguments

n number of observations

lambda1 a single numeric value for parameter lambda1 with lambda1 > 0

lambda2 a single numeric value for parameter lambda2 with 0 ≤ lamdba2 < 1. When
lambda2=0, the generalized Poisson distribution reduces to the Poisson distri-
bution

Details

The generalized Poisson distribution has the density

p(x) = λ1(λ1 + λ2 · x)x−1 exp(−λ1 − λ2 · x))
x!

for x = 0, 1, 2, . . .,b with E(X) = λ1

1−λ2
and variance var(X) = λ1

(1−λ2)3
.

Value

rgenpois generates random deviates of the generalized Poisson distribution.

Author(s)

Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).

References

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and
comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.

See Also

pgenpois, dgenpois; Distributions for other standard distributions, including dpois for the Poisson
distribution.

Examples

dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5)
pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5)
hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5))

Viterbi_algorithm 45

Viterbi_algorithm Algorithm for Decoding Hidden Markov Models (global)

Description

The function decodes a trainded hidden Markov model into a most likely sequence of hidden
states. Different to the local_decoding_algorithm, this algorithm determines the sequence of
most likely hidden states for all time points simultaneously. See MacDonald & Zucchini (2009,
Paragraph 5.3.2) for further details.

Usage

Viterbi_algorithm(
x,
m,
delta,
gamma,
distribution_class,
distribution_theta,
discr_logL = FALSE,
discr_logL_eps = 0.5

)

Arguments

x a vector object containing the time-series of observations that are assumed to be
realizations of the (hidden Markov state dependent) observation process of the
model.

m a (finite) number of states in the hidden Markov chain.
delta a vector object containing values for the marginal probability distribution of the

m states of the Markov chain at the time point t=1.
gamma a matrix (ncol=nrow=m) containing values for the transition matrix of the hidden

Markov chain.
distribution_class

a single character string object with the abbreviated name of the m observation
distributions of the Markov dependent observation process. The following dis-
tributions are supported by this algorithm: Poisson (pois); generalized Poisson
(genpois); normal (norm); geometric (geom).

distribution_theta

a list object containing the parameter values for the m observation distributions
that are dependent on the hidden Markov state.

discr_logL a logical object. It is TRUE if the discrete log-likelihood shall be calculated (for
distribution_class="norm" instead of the general log-likelihood). Default
is FALSE.

discr_logL_eps a single numerical value to approximately determine the discrete log-likelihood
for a hidden Markov model based on nomal distributions (for "norm"). The
default value is 0.5.

46 Viterbi_algorithm

Value

The Viterbi_algorithm returns a list containing the following two components:

omega a (T,m)-matrix (when T indicates the length/size of the observation time-series and m the
number of states of the HMM) containing probabilities (maximum probability to generate
the first t members (t=1,...,T) of the given time-series x with the HMM and to stop in state
i=1,...,m) calculated by the algorithm. See MacDonald & Zucchini (2009, Paragraph 5.3.2)
for further details.

decoding a numerical vector containing the globally most likely sequence of hidden states as de-
coded by the Viterbi algorithm.

Author(s)

The basic algorithm for a Poisson-HMM can be found in MacDonald & Zucchini (2009, Paragraph
A.2.4). Extension and implementation by Vitali Witowski (2013).

References

MacDonald, I. L., Zucchini, W. (2009) Hidden Markov Models for Time Series: An Introduction
Using R, Boca Raton: Chapman & Hall.

Forney, G.D. (1973). The Viterbi algorithm. Proceeding of the IEE, vol. 61(3), 268–278.

Viterbi, A.J. (1967). Error Bounds for concolutional codes and an asymptotically optimal decoding
algorithm. Information Theory, IEEE Transactions on, vol. 13(2), 260–269.

See Also

local_decoding_algorithm, HMM_decoding

Examples

x <- c(1,16,19,34,22,6,3,5,6,3,4,1,4,3,5,7,9,8,11,11,
14,16,13,11,11,10,12,19,23,25,24,23,20,21,22,22,18,7,
5,3,4,3,2,3,4,5,4,2,1,3,4,5,4,5,3,5,6,4,3,6,4,8,9,12,
9,14,17,15,25,23,25,35,29,36,34,36,29,41,42,39,40,43,
37,36,20,20,21,22,23,26,27,28,25,28,24,21,25,21,20,21,
11,18,19,20,21,13,19,18,20,7,18,8,15,17,16,13,10,4,9,
7,8,10,9,11,9,11,10,12,12,5,13,4,6,6,13,8,9,10,13,13,
11,10,5,3,3,4,9,6,8,3,5,3,2,2,1,3,5,11,2,3,5,6,9,8,5,
2,5,3,4,6,4,8,15,12,16,20,18,23,18,19,24,23,24,21,26,
36,38,37,39,45,42,41,37,38,38,35,37,35,31,32,30,20,39,
40,33,32,35,34,36,34,32,33,27,28,25,22,17,18,16,10,9,
5,12,7,8,8,9,19,21,24,20,23,19,17,18,17,22,11,12,3,9,
10,4,5,13,3,5,6,3,5,4,2,5,1,2,4,4,3,2,1)

Train hidden Markov model for m = 4 -----

m_trained_HMM <-
HMM_training(x = x,

min_m = 4,
max_m = 4,

Viterbi_algorithm 47

distribution_class = "pois")$trained_HMM_with_selected_m

Decode the trained HMM using the Viterbi algorithm to get
the globally most likely sequence of hidden states for
the time-series of observations
global_decoding <-
Viterbi_algorithm(x = x,

m = m_trained_HMM$m,
delta = m_trained_HMM$delta,
gamma = m_trained_HMM$gamma,

distribution_class = m_trained_HMM$distribution_class,
distribution_theta = m_trained_HMM$distribution_theta)

Most likely sequence of hidden states

print(global_decoding$decoding)
plot(global_decoding$decoding)

Index

∗ datagen
HMM_simulation, 30

∗ distribution
dgenpois, 16
pgenpois, 42
rgenpois, 43

∗ iteration
Baum_Welch_algorithm, 7
HMM_training, 33
initial_parameter_training, 37

∗ ts
Baum_Welch_algorithm, 7
cut_off_point_method, 12
direct_numerical_maximization, 17

AIC_HMM, 5, 12, 26, 32, 35, 36

Baum_Welch_algorithm, 7, 19, 21, 23, 26,
34–36, 39

BIC_HMM, 6, 11, 26, 32, 35, 36

cut_off_point_method, 12, 22, 24–26

dgenpois, 16, 17, 44
direct_numerical_maximization, 10, 17,

21, 23, 26, 34–36, 39
Distributions, 17, 43, 44
dpois, 17, 43, 44

forward_backward_algorithm, 9, 10, 18, 19,
20

HMM_based_method, 10, 13, 14, 19, 21, 22
HMM_decoding, 22, 24, 25, 26, 41, 46
HMM_simulation, 30
HMM_training, 6, 10, 12, 19, 21–26, 32, 33, 39
HMMpa (HMMpa-package), 2
HMMpa-package, 2

initial_parameter_training, 10, 19, 21,
26, 35, 36, 37

local_decoding_algorithm, 24, 26–28, 40,
45, 46

nlm, 8, 9, 17, 18, 24, 35

pgenpois, 17, 42, 43, 44

rgenpois, 17, 43, 43, 44

Viterbi_algorithm, 24, 26–28, 40, 41, 45

48

	HMMpa-package
	AIC_HMM
	Baum_Welch_algorithm
	BIC_HMM
	cut_off_point_method
	dgenpois
	direct_numerical_maximization
	forward_backward_algorithm
	HMM_based_method
	HMM_decoding
	HMM_simulation
	HMM_training
	initial_parameter_training
	local_decoding_algorithm
	pgenpois
	rgenpois
	Viterbi_algorithm
	Index

